Tēnā koutou, tēnā koutou, tēnā koutou katoa - greetings, greetings to you all! My name is KoiKiwi - "Koi" is "smart" in Maori, one of the official languages of New Zealand, the land of Kiwis.
KoiKiwi is a website for children and adults that care about the environment! We have compiled a set of games: action games, puzzle games, trivia and other fun games - which all are focused on ecology, the environment and the future of our planet.
We hope you enjoy our website! Please spread the word, add links from your own site or from your school's site to KoiKiwi.com, and let your colleagues and friends know!
whakawhetai koe - thank you :-) ---- KoiKiwi
Contact us at E-mail
Recycling Educational Games
Recycling is the process of converting waste materials into new materials and objects. It is an alternative to "conventional" waste disposal that can save material and help lower greenhouse gas emissions (compared to plastic production, for example). Recycling can prevent the waste of potentially useful materials and reduce the consumption of fresh raw materials, thereby reducing: energy usage, air pollution (from incineration), and water pollution (from landfilling).
Recycling is a key component of modern waste reduction and is the third component of the "Reduce, Reuse, and Recycle" waste hierarchy.
KoiKiwi has developed several games that teach and educate about recycling in a fun way:
Eco Snake
Collect rubbish and recycling with your snake which becomes bigger and bigger, avoid collision with your tail and corners! [play]
Based on the 1980 popular snake game, in this game the player needs to collect rubbish and recycling to earn more points. It develops the following skills: (1) Knowledge of identifying recycling and rubbish (2) Awareness to the need to collect rubbish. (3) Coordination and fun Close
Eco Tower
Collect plastic bottles as you avoid acid drops and CO2 molecules. Climb up the tower to clean the plastic bottles! [play]
Platformers games are very popular among kids, in this game the player need to collect plastic bottles and avoid CO2 molecules. It develops the following skills: (1) Importance of collecting plastic bottles (2) Awareness to CO2 risks. (3) Motoric skills, coordination and fun Close
Catch The Rubbish
Clean our planet: catch rubbish and pollutants while sorting out the good things, help Earth be clean! [play]
This game would be loved by kids as it is simple and relaxing. It develops the following skills: (1) awareness to rubbish cleaning and types of rubbish (2) mouse and keyboard coordination. Close
3d Pollutant Maze
Help our planet Earth out from the 3-d maze of rubbish piles to a cleaner and happier place in space! [play]
This game is not only smart but also metaphorically developing the awareness of the player to the need of our planet to get out of the rubbish maze: mazes are changing by level and are made of rubbish piles, while the player is trying to get Earth out of the rubbish. It develops the following skills: (1) awareness to the need to clean our planet (2) IQ skills and maily abstract-reasoning (3) Concentration (4)problem solving Close
Environmental Memory Game
Try to find pairs of wind turbines, green house gas molecules and recycling icons in this cool game [play]
This game is the classical memory game, could be played to many levels and includes environmental categories: wind turbines, greenhouse gases and recycling. The advanced level can be fairly difficult. It develops the following skills: (1) knowledge of types of wind turbines, recycling facilities and molecules of greenhouse gases (2) IQ skills and especially abstract reasoning, visual comparison, memory, attention to details (3) concentration Close
Ecological Puzzles
More than 50 different ecological puzzles of recycling, wild animals, wind turbines, power dams and more [play]
A classical puzzle game, could be played to many levels - up to 100 puzzle pieces - and includes environmental categories: wind turbines, power dams, polution, animals and recycling. It develops the following skills: (1) knowledge of types of wind turbines, recycling facilities, the face of pollution, and how power dams look (2) IQ skills and especially lateral thinking, visual comparison, memory, attention to details (3) concentration Close
KoiKiwi in the recycling boxes
KoiKiwi is hiding between three rubbish recycling boxes - do your best to find KoiKiwi and let it out! [play]
A version of the three coins under a cup game, only that here KoiKiwi is hiding in a box between three boxes that get shuffled. Lots of fun! It develops the following skills: (1) Concentration and fast movement tracking (2) IQ skills especially Memory (3) some awareness to recycling boxes Close
Forest rubbish jumper
Jump between the forest trees to collect rubbish and polluting hazards, without loosing your balance! [play]
This is a really cool game for kids, we converted the forest jumper game (where the player collects fruits) to an environmentally aware game: here the jumper collects rubbish from the forest: plastic bottles, tins, plastic cups, rubbish bags and hazards signs. It develops the following skills: (1) Awareness to the need to keep the firests clean! (2) The game includes a series of formal signs of hazards: radioactive materials, radiation, magntic hazards, poison and others - so the student can be familiared with those (3) coordination and fun Close
Flying bird recycling rubbish
The forest is polluted with rubbish, collect it and earn recycling points while avoiding low trees and hazards [play]
In this game the player needs to collect recycling symbols while flying in the forest and getting away from hazards - a great way to develop awareness to recycling as well as to get familiared to the different recycling symbols. It develops the following skills: (1) Awareness to the need of recycling, in the context of keeping the forest green (2) knowledge of all sorts of recycling symbols (3) visual comparison, coordination and fun Close
About Recycling
Recycling industrial waste
Although many government programs are concentrated on recycling at home, 64% of waste in the United Kingdom is generated by industry. The focus of many recycling programs done by industry is the cost–effectiveness of recycling. The ubiquitous nature of cardboard packaging makes cardboard a commonly recycled waste product by companies that deal heavily in packaged goods, like retail stores, warehouses, and distributors of goods. Other industries deal in niche or specialized products, depending on the nature of the waste materials that are present.
The glass, lumber, wood pulp and paper manufacturers all deal directly in commonly recycled materials; however, old rubber tires may be collected and recycled by independent tire dealers for a profit.
Levels of metals recycling are generally low. In 2010, the International Resource Panel, hosted by the United Nations Environment Programme (UNEP) published reports on metal stocks that exist within society and their recycling rates. The Panel reported that the increase in the use of metals during the 20th and into the 21st century has led to a substantial shift in metal stocks from below ground to use in applications within society above ground. For example, the in-use stock of copper in the USA grew from 73 to 238 kg per capita between 1932 and 1999.
The report authors observed that, as metals are inherently recyclable, the metal stocks in society can serve as huge mines above ground (the term "urban mining" has been coined with this idea in mind). However, they found that the recycling rates of many metals are very low. The report warned that the recycling rates of some rare metals used in applications such as mobile phones, battery packs for hybrid cars and fuel cells, are so low that unless future end-of-life recycling rates are dramatically stepped up these critical metals will become unavailable for use in modern technology.
The military recycles some metals. The U.S. Navy's Ship Disposal Program uses ship breaking to reclaim the steel of old vessels. Ships may also be sunk to create an artificial reef. Uranium is a very dense metal that has qualities superior to lead and titanium for many military and industrial uses. The uranium left over from processing it into nuclear weapons and fuel for nuclear reactors is called depleted uranium, and it is used by all branches of the U.S. military use for armour-piercing shells and shielding.
The construction industry may recycle concrete and old road surface pavement, selling their waste materials for profit.
Some industries, like the renewable energy industry and solar photovoltaic technology, in particular, are being proactive in setting up recycling policies even before there is considerable volume to their waste streams, anticipating future demand during their rapid growth.
Recycling of plastics is more difficult, as most programs are not able to reach the necessary level of quality. Recycling of PVC often results in downcycling of the material, which means only products of lower quality standard can be made with the recycled material. A new approach which allows an equal level of quality is the Vinyloop process. It was used after the London Olympics 2012 to fulfill the PVC Policy.
E-waste recycling
Computer processors retrieved from waste stream
E-waste is a growing problem, accounting for 20–50 million metric tons of global waste per year according to the EPA. It is also the fastest growing waste stream in the EU. Many recyclers do not recycle e-waste responsibly. After the cargo barge Khian Sea dumped 14,000 metric tons of toxic ash in Haiti, the Basel Convention was formed to stem the flow of hazardous substances into poorer countries. They created the e-Stewards certification to ensure that recyclers are held to the highest standards for environmental responsibility and to help consumers identify responsible recyclers. This works alongside other prominent legislation, such as the Waste Electrical and Electronic Equipment Directive of the EU the United States National Computer Recycling Act, to prevent poisonous chemicals from entering waterways and the atmosphere.
In the recycling process, television sets, monitors, cell phones, and computers are typically tested for reuse and repaired. If broken, they may be disassembled for parts still having high value if labor is cheap enough. Other e-waste is shredded to pieces roughly 10 centimetres (3.9 in) in size, and manually checked to separate out toxic batteries and capacitors which contain poisonous metals. The remaining pieces are further shredded to 10 millimetres (0.39 in) particles and passed under a magnet to remove ferrous metals. An eddy current ejects non-ferrous metals, which are sorted by density either by a centrifuge or vibrating plates. Precious metals can be dissolved in acid, sorted, and smelted into ingots. The remaining glass and plastic fractions are separated by density and sold to re-processors. Television sets and monitors must be manually disassembled to remove lead from CRTs or the mercury backlight from LCDs.
Plastic recycling
A container for recycling used plastic spoons into material for 3D printing
Plastic recycling is the process of recovering scrap or waste plastic and reprocessing the material into useful products, sometimes completely different in form from their original state. For instance, this could mean melting down soft drink bottles and then casting them as plastic chairs and tables.
Physical recycling
Some plastics are remelted to form new plastic objects; for example, PET water bottles can be converted into polyester destined for clothing. A disadvantage of this type of recycling is that the molecular weight of the polymer can change further and the levels of unwanted substances in the plastic can increase with each remelt.
Chemical recycling
For some polymers, it is possible to convert them back into monomers, for example, PET can be treated with an alcohol and a catalyst to form a dialkyl terephthalate. The terephthalate diester can be used with ethylene glycol to form a new polyester polymer, thus making it possible to use the pure polymer again.
Waste plastic pyrolysis to fuel oil
Another process involves conversion of assorted polymers into petroleum by a much less precise thermal depolymerization process. Such a process would be able to accept almost any polymer or mix of polymers, including thermoset materials such as vulcanized rubber tires and the biopolymers in feathers and other agricultural waste. Like natural petroleum, the chemicals produced can be used as fuels or as feedstock. A RESEM Technology plant of this type in Carthage, Missouri, USA, uses turkey waste as input material. Gasification is a similar process but is not technically recycling since polymers are not likely to become the result. Plastic Pyrolysis can convert petroleum based waste streams such as plastics into quality fuels, carbons. Given below is the list of suitable plastic raw materials for pyrolysis:
Mixed plastic (HDPE, LDPE, PE, PP, Nylon, Teflon, PS, ABS, FRP, etc.)
Mixed waste plastic from waste paper mill
Multi-layered plastic
Recycling loops
Loops for production-waste, product and material recycling
The (ideal) recycling process can be differentiated into three loops, one for manufacture (production-waste recycling) and two for disposal of the product (product and material recycling).
The product's manufacturing phase, which consists of material processing and fabrication, forms the production-waste recycling loop. Industrial waste materials are fed back into, and reused in, the same production process.
The product's disposal process requires two recycling loops: product recycling and material recycling. The product or product parts are reused in the product recycling phase. This happens in one of two ways: the product is used retaining the product functionality ("reuse") or the product continues to be used but with altered functionality ("further use"). The product design is unmodified, or only slightly modified, in both scenarios.
Product disassembly requires material recycling where product materials are recovered and recycled. Ideally, the materials are processed so they can flow back into the production process.
Recycling codes
Main article: Recycling codes
Recycling codes on products
In order to meet recyclers' needs while providing manufacturers a consistent, uniform system, a coding system was developed. The recycling code for plastics was introduced in 1988 by the plastics industry through the Society of the Plastics Industry. Because municipal recycling programs traditionally have targeted packaging—primarily bottles and containers—the resin coding system offered a means of identifying the resin content of bottles and containers commonly found in the residential waste stream.
Plastic products are printed with numbers 1–7 depending on the type of resin. Type 1 (polyethylene terephthalate) is commonly found in soft drink and water bottles. Type 2 (high-density polyethylene) is found in most hard plastics such as milk jugs, laundry detergent bottles, and some dishware. Type 3 (polyvinyl chloride) includes items such as shampoo bottles, shower curtains, hula hoops, credit cards, wire jacketing, medical equipment, siding, and piping. Type 4 (low-density polyethylene) is found in shopping bags, squeezable bottles, tote bags, clothing, furniture, and carpet. Type 5 is polypropylene and makes up syrup bottles, straws, Tupperware, and some automotive parts. Type 6 is polystyrene and makes up meat trays, egg cartons, clamshell containers, and compact disc cases. Type 7 includes all other plastics such as bulletproof materials, 3- and 5-gallon water bottles, and sunglasses. Having a recycling code or the chasing arrows logo on a material is not an automatic indicator that a material is recyclable but rather an explanation of what the material is. Types 1 and 2 are the most commonly recycled.
Economic impact
Critics dispute the net economic and environmental benefits of recycling over its costs, and suggest that proponents of recycling often make matters worse and suffer from confirmation bias. Specifically, critics argue that the costs and energy used in collection and transportation detract from (and outweigh) the costs and energy saved in the production process; also that the jobs produced by the recycling industry can be a poor trade for the jobs lost in logging, mining, and other industries associated with production; and that materials such as paper pulp can only be recycled a few times before material degradation prevents further recycling.
The National Waste and Recycling Association (NWRA), reported in May 2015, that recycling and waste made a $6.7 billion economic impact in Ohio, U.S., and employed 14,000 people.
Cost–benefit analysis
Environmental effects of recycling
Material Energy savings Air pollution savings
Aluminium 95% 95%
Cardboard 24% —
Glass 5–30% 20%
Paper 40% 73%
Plastics 70% —
Steel 60% —
There is some debate over whether recycling is economically efficient. According to a Natural Resources Defense Council study, waste collection and landfill disposal creates less than one job per 1,000 tons of waste material managed; in contrast, the collection, processing, and manufacturing of recycled materials creates 6-13 or more jobs per 1,000 tons. However, the cost effectiveness of creating the additional jobs remains unproven. According to the U.S. Recycling Economic Informational Study, there are over 50,000 recycling establishments that have created over a million jobs in the US.
Two years after New York City declared that implementing recycling programs would be "a drain on the city," New York City leaders realized that an efficient recycling system could save the city over $20 million. Municipalities often see fiscal benefits from implementing recycling programs, largely due to the reduced landfill costs. A study conducted by the Technical University of Denmark according to the Economist found that in 83 percent of cases, recycling is the most efficient method to dispose of household waste. However, a 2004 assessment by the Danish Environmental Assessment Institute concluded that incineration was the most effective method for disposing of drink containers, even aluminium ones.
Fiscal efficiency is separate from economic efficiency. Economic analysis of recycling does not include what economists call externalities, which are unpriced costs and benefits that accrue to individuals outside of private transactions. Examples include: decreased air pollution and greenhouse gases from incineration, reduced hazardous waste leaching from landfills, reduced energy consumption, and reduced waste and resource consumption, which leads to a reduction in environmentally damaging mining and timber activity. About 4,000 minerals are known, of these only a few hundred minerals in the world are relatively common. Known reserves of phosphorus will be exhausted within the next 100 years at current rates of usage. Without mechanisms such as taxes or subsidies to internalize externalities, businesses may ignore them despite the costs imposed on society. To make such nonfiscal benefits economically relevant, advocates have pushed for legislative action to increase the demand for recycled materials. The United States Environmental Protection Agency (EPA) has concluded in favor of recycling, saying that recycling efforts reduced the country's carbon emissions by a net 49 million metric tonnes in 2005. In the United Kingdom, the Waste and Resources Action Programme stated that Great Britain's recycling efforts reduce CO2 emissions by 10–15 million tonnes a year. Recycling is more efficient in densely populated areas, as there are economies of scale involved.
Wrecked automobiles gathered for smelting
Certain requirements must be met for recycling to be economically feasible and environmentally effective. These include an adequate source of recyclates, a system to extract those recyclates from the waste stream, a nearby factory capable of reprocessing the recyclates, and a potential demand for the recycled products. These last two requirements are often overlooked—without both an industrial market for production using the collected materials and a consumer market for the manufactured goods, recycling is incomplete and in fact only "collection".
Free-market economist Julian Simon remarked "There are three ways society can organize waste disposal: (a) commanding, (b) guiding by tax and subsidy, and (c) leaving it to the individual and the market". These principles appear to divide economic thinkers today.
Frank Ackerman favours a high level of government intervention to provide recycling services. He believes that recycling's benefit cannot be effectively quantified by traditional laissez-faire economics. Allen Hershkowitz supports intervention, saying that it is a public service equal to education and policing. He argues that manufacturers should shoulder more of the burden of waste disposal.
Paul Calcott and Margaret Walls advocate the second option. A deposit refund scheme and a small refuse charge would encourage recycling but not at the expense of fly-tipping. Thomas C. Kinnaman concludes that a landfill tax would force consumers, companies and councils to recycle more.
Most free-market thinkers detest subsidy and intervention because they waste resources. Terry Anderson and Donald Leal think that all recycling programmes should be privately operated, and therefore would only operate if the money saved by recycling exceeds its costs. Daniel K. Benjamin argues that it wastes people's resources and lowers the wealth of a population.
Trade in recyclates
Certain countries trade in unprocessed recyclates. Some have complained that the ultimate fate of recyclates sold to another country is unknown and they may end up in landfills instead of being reprocessed. According to one report, in America, 50–80 percent of computers destined for recycling are actually not recycled. There are reports of illegal-waste imports to China being dismantled and recycled solely for monetary gain, without consideration for workers' health or environmental damage. Although the Chinese government has banned these practices, it has not been able to eradicate them. In 2008, the prices of recyclable waste plummeted before rebounding in 2009. Cardboard averaged about £53/tonne from 2004–2008, dropped to £19/tonne, and then went up to £59/tonne in May 2009. PET plastic averaged about £156/tonne, dropped to £75/tonne and then moved up to £195/tonne in May 2009.
Certain regions have difficulty using or exporting as much of a material as they recycle. This problem is most prevalent with glass: both Britain and the U.S. import large quantities of wine bottled in green glass. Though much of this glass is sent to be recycled, outside the American Midwest there is not enough wine production to use all of the reprocessed material. The extra must be downcycled into building materials or re-inserted into the regular waste stream.
Similarly, the northwestern United States has difficulty finding markets for recycled newspaper, given the large number of pulp mills in the region as well as the proximity to Asian markets. In other areas of the U.S., however, demand for used newsprint has seen wide fluctuation.
In some U.S. states, a program called RecycleBank pays people to recycle, receiving money from local municipalities for the reduction in landfill space which must be purchased. It uses a single stream process in which all material is automatically sorted.
Criticisms and responses
Much of the difficulty inherent in recycling comes from the fact that most products are not designed with recycling in mind. The concept of sustainable design aims to solve this problem, and was laid out in the book Cradle to Cradle: Remaking the Way We Make Things by architect William McDonough and chemist Michael Braungart. They suggest that every product (and all packaging they require) should have a complete "closed-loop" cycle mapped out for each component—a way in which every component will either return to the natural ecosystem through biodegradation or be recycled indefinitely.
Complete recycling is impossible from a practical standpoint. In summary, substitution and recycling strategies only delay the depletion of non-renewable stocks and therefore may buy time in the transition to true or strong sustainability, which ultimately is only guaranteed in an economy based on renewable resources.:21
While recycling diverts waste from entering directly into landfill sites, current recycling misses the dissipative components. Complete recycling is impracticable as highly dispersed wastes become so diluted that the energy needed for their recovery becomes increasingly excessive. "For example, how will it ever be possible to recycle the numerous chlorinated organic hydrocarbons that have bioaccumulated in animal and human tissues across the globe, the copper dispersed in fungicides, the lead in widely applied paints, or the zinc oxides present in the finely dispersed rubber powder that is abraded from automobile tires?":260
As with environmental economics, care must be taken to ensure a complete view of the costs and benefits involved. For example, paperboard packaging for food products is more easily recycled than most plastic, but is heavier to ship and may result in more waste from spoilage.
Energy and material flows
Bales of crushed steel ready for transport to the smelter
The amount of energy saved through recycling depends upon the material being recycled and the type of energy accounting that is used. Correct accounting for this saved energy can be accomplished with life-cycle analysis using real energy values. In addition, exergy, which is a measure of useful energy can be used. In general, it takes far less energy to produce a unit mass of recycled materials than it does to make the same mass of virgin materials.
Some scholars use emergy (spelled with an m) analysis, for example, budgets for the amount of energy of one kind (exergy) that is required to make or transform things into another kind of product or service. Emergy calculations take into account economics which can alter pure physics based results. Using emergy life-cycle analysis researchers have concluded that materials with large refining costs have the greatest potential for high recycle benefits. Moreover, the highest emergy efficiency accrues from systems geared toward material recycling, where materials are engineered to recycle back into their original form and purpose, followed by adaptive reuse systems where the materials are recycled into a different kind of product, and then by-product reuse systems where parts of the products are used to make an entirely different product.
The Energy Information Administration (EIA) states on its website that "a paper mill uses 40 percent less energy to make paper from recycled paper than it does to make paper from fresh lumber." Some critics argue that it takes more energy to produce recycled products than it does to dispose of them in traditional landfill methods, since the curbside collection of recyclables often requires a second waste truck. However, recycling proponents point out that a second timber or logging truck is eliminated when paper is collected for recycling, so the net energy consumption is the same. An Emergy life-cycle analysis on recycling revealed that fly ash, aluminum, recycled concrete aggregate, recycled plastic, and steel yield higher efficiency ratios, whereas the recycling of lumber generates the lowest recycle benefit ratio. Hence, the specific nature of the recycling process, the methods used to analyse the process, and the products involved affect the energy savings budgets.
It is difficult to determine the amount of energy consumed or produced in waste disposal processes in broader ecological terms, where causal relations dissipate into complex networks of material and energy flow. For example, "cities do not follow all the strategies of ecosystem development. Biogeochemical paths become fairly straight relative to wild ecosystems, with very reduced recycling, resulting in large flows of waste and low total energy efficiencies. By contrast, in wild ecosystems, one population's wastes are another population's resources, and succession results in efficient exploitation of available resources. However, even modernized cities may still be in the earliest stages of a succession that may take centuries or millennia to complete.":720 How much energy is used in recycling also depends on the type of material being recycled and the process used to do so. Aluminium is generally agreed to use far less energy when recycled rather than being produced from scratch. The EPA states that "recycling aluminum cans, for example, saves 95 percent of the energy required to make the same amount of aluminum from its virgin source, bauxite." In 2009, more than half of all aluminium cans produced came from recycled aluminium.
Every year, millions of tons of materials are being exploited from the earth's crust, and processed into consumer and capital goods. After decades to centuries, most of these materials are "lost". With the exception of some pieces of art or religious relics, they are no longer engaged in the consumption process. Where are they? Recycling is only an intermediate solution for such materials, although it does prolong the residence time in the anthroposphere. For thermodynamic reasons, however, recycling cannot prevent the final need for an ultimate sink.:1
Economist Steven Landsburg has suggested that the sole benefit of reducing landfill space is trumped by the energy needed and resulting pollution from the recycling process. Others, however, have calculated through life-cycle assessment that producing recycled paper uses less energy and water than harvesting, pulping, processing, and transporting virgin trees. When less recycled paper is used, additional energy is needed to create and maintain farmed forests until these forests are as self-sustainable as virgin forests.
Other studies have shown that recycling in itself is inefficient to perform the "decoupling" of economic development from the depletion of non-renewable raw materials that is necessary for sustainable development. The international transportation or recycle material flows through "... different trade networks of the three countries result in different flows, decay rates, and potential recycling returns.":1 As global consumption of a natural resources grows, its depletion is inevitable. The best recycling can do is to delay, complete closure of material loops to achieve 100 percent recycling of nonrenewables is impossible as micro-trace materials dissipate into the environment causing severe damage to the planet's ecosystems. Historically, this was identified as the metabolic rift by Karl Marx, who identified the unequal exchange rate between energy and nutrients flowing from rural areas to feed urban cities that create effluent wastes degrading the planet's ecological capital, such as loss in soil nutrient production. Energy conservation also leads to what is known as Jevon's paradox, where improvements in energy efficiency lowers the cost of production and leads to a rebound effect where rates of consumption and economic growth increases.
A shop in New York only sells items recycled from demolished buildings
Costs
The amount of money actually saved through recycling depends on the efficiency of the recycling program used to do it. The Institute for Local Self-Reliance argues that the cost of recycling depends on various factors, such as landfill fees and the amount of disposal that the community recycles. It states that communities begin to save money when they treat recycling as a replacement for their traditional waste system rather than an add-on to it and by "redesigning their collection schedules and/or trucks."
In some cases, the cost of recyclable materials also exceeds the cost of raw materials. Virgin plastic resin costs 40 percent less than recycled resin. Additionally, a United States Environmental Protection Agency (EPA) study that tracked the price of clear glass from 15 July – 2 August 1991, found that the average cost per ton ranged from $40 to $60 while a USGS report shows that the cost per ton of raw silica sand from years 1993 to 1997 fell between $17.33 and $18.10.
Comparing the market cost of recyclable material with the cost of new raw materials ignores economic externalities—the costs that are currently not counted by the market. Creating a new piece of plastic, for instance, may cause more pollution and be less sustainable than recycling a similar piece of plastic, but these factors will not be counted in market cost. A life cycle assessment can be used to determine the levels of externalities and decide whether the recycling may be worthwhile despite unfavorable market costs. Alternatively, legal means (such as a carbon tax) can be used to bring externalities into the market, so that the market cost of the material becomes close to the true cost.
Working conditions
Some people in Brazil earn their living by collecting and sorting garbage and selling them for recycling
The recycling of waste electrical and electronic equipment in India and China generates a significant amount of pollution. Informal recycling in an underground economy of these countries has generated an environmental and health disaster. High levels of lead (Pb), polybrominated diphenylethers (PBDEs), polychlorinated dioxins and furans, as well as polybrominated dioxins and furans (PCDD/Fs and PBDD/Fs) concentrated in the air, bottom ash, dust, soil, water, and sediments in areas surrounding recycling sites.
Environmental impact
Economist Steven Landsburg, author of a paper entitled "Why I Am Not an Environmentalist," claimed that paper recycling actually reduces tree populations. He argues that because paper companies have incentives to replenish their forests, large demands for paper lead to large forests while reduced demand for paper leads to fewer "farmed" forests.
When foresting companies cut down trees, more are planted in their place; however, such "farmed" forests are inferior to virgin forests in several ways. Farmed forests are not able to fix the soil as quickly as virgin forests, causing widespread soil erosion and often requiring large amounts of fertilizer to maintain while containing little tree and wild-life biodiversity compared to virgin forests. Also, the new trees planted are not as big as the trees that were cut down, and the argument that there will be "more trees" is not compelling to forestry advocates when they are counting saplings.
In particular, wood from tropical rainforests is rarely harvested for paper because of their heterogeneity. According to the United Nations Framework Convention on Climate Change secretariat, the overwhelming direct cause of deforestation is subsistence farming (48% of deforestation) and commercial agriculture (32%), which is linked to food, not paper production.
Possible income loss and social costs
In some countries, recycling is performed by the entrepreneurial poor such as the karung guni, zabbaleen, the rag-and-bone man, waste picker, and junk man. With the creation of large recycling organizations that may be profitable, either by law or economies of scale, the poor are more likely to be driven out of the recycling and the remanufacturing market. To compensate for this loss of income, a society may need to create additional forms of societal programs to help support the poor. Like the parable of the broken window, there is a net loss to the poor and possibly the whole of a society to make recycling artificially profitable e.g. through the law. However, in Brazil and Argentina, waste pickers/informal recyclers work alongside the authorities, in fully or semi-funded cooperatives, allowing informal recycling to be legitimized as a paid public sector job.
Because the social support of a country is likely to be less than the loss of income to the poor undertaking recycling, there is a greater chance the poor will come in conflict with the large recycling organizations. This means fewer people can decide if certain waste is more economically reusable in its current form rather than being reprocessed. Contrasted to the recycling poor, the efficiency of their recycling may actually be higher for some materials because individuals have greater control over what is considered "waste."
One labor-intensive underused waste is electronic and computer waste. Because this waste may still be functional and wanted mostly by those on lower incomes, who may sell or use it at a greater efficiency than large recyclers.
Some recycling advocates believe that laissez-faire individual-based recycling does not cover all of society's recycling needs. Thus, it does not negate the need for an organized recycling program. Local government can consider the activities of the recycling poor as contributing to property blight.